Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37513069

ABSTRACT

In this work, we present a theoretical study on the use of Cu2ZnSn(S,Se)4 quantum wells in Cu2ZnSnS4 solar cells to enhance device efficiency. The role of different well thickness, number, and S/(S + Se) composition values is evaluated. The physical mechanisms governing the optoelectronic parameters are analyzed. The behavior of solar cells based on Cu2ZnSn(S,Se)4 without quantum wells is also considered for comparison. Cu2ZnSn(S,Se)4 quantum wells with a thickness lower than 50 nm present the formation of discretized eigenstates which play a fundamental role in absorption and recombination processes. Results show that well thickness plays a more important role than well number. We found that the use of wells with thicknesses higher than 20 nm allow for better efficiencies than those obtained for a device without nanostructures. A record efficiency of 37.5% is achieved when 36 wells with a width of 50 nm are used, considering an S/(S + Se) well compositional ratio of 0.25.

2.
Phys Chem Chem Phys ; 25(3): 2546-2565, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36602190

ABSTRACT

The sensing of harmful gases and vapors is of fundamental interest to control the industrial emissions and environmental contamination. Nitrogen/phosphorus codoped carbon nanotube sponges (NP-CNTSs) were used to detect ethanol, acetone, cyclohexane, isopropanol, and methanol. The NP-CNTSs were produced through the aerosol-assisted chemical vapor deposition (AACVD) method using acetonitrile and triphenylphosphine as precursors at 1020 °C. The sensors based on NP-CNTSs were tested with varying operating temperatures (25-100 °C) and gas vapor concentrations (5-50 ppm). For instance, for a gas vapor concentration of 30 ppm and an operating temperature of 65 °C, the sensors showed changes in the electrical resistance of 1.12%, 1.21%, 1.09%, 2.4%, and 1.34% for ethanol, acetone, cyclohexane, isopropanol, and methanol, respectively. We found that the response and recovery times for isopropanol gas vapor are up to 43.7 s and 95 s, respectively. The current sensor outperformed the sensors reported in the literature by at least two times in the response measurement. Additionally, we performed van der Waals density functional theory calculations to elucidate the role of nitrogen and phosphorous codoped single-walled carbon nanotubes (SWCNTs) and their interaction with the considered gas molecule. We analyzed the molecular adsorption energy, optimized structures, and the density of states and calculated the electrostatic potential surface for N-doped, P-doped, NP-codoped, and OH-functionalized NP-codoped metallic SWCNTs-(6,6) and semiconducting SWCNTs-(10,0). Adsorption energy calculations revealed that in most cases the molecules are adsorbed to carbon nanotubes via physisorption. The codoping in SWCNTs-(6,6) promoted structural changes in the surface nanotube and marked chemisorption for acetone molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...